WŁAŚCIWOŚCI KOORDYNACYJNE (-)-CYTYZYNY ORAZ JEJ POCHODNYCH – ANALIZA SPEKTRALNA I RENTGENOSTRUKTURALNA KOMPLEKSÓW

ANNA K. PRZYBYŁ, MACIEJ KUBICKI, RENATA JASTRZĄB

Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Umultowska 89b, 61-614 Poznań

Abstrakt: Po raz pierwszy zaprezentujemy kompleksy (-)-cytyzyny oraz 1,n-di(12Hcytyzyno-12-yl)alkilowych pochodnych z jonami miedzi i cynku oraz jonami metali I grupy układu okresowego. Otrzymane związki zostały poddane analizie rentgenowskiej oraz spektralnej z zastosowaniem metod: ESI-MS, NMR, UV, Vis i EPR. Okazuje się, że w roztworze jony metalu koordynowane są przez drugorzędowy atom azotu (pierścień C), natomiast w ciele stałym udowodniono, że jon metalu koordynowany jest przez atom tlenu grupy laktamowej pierścienia A.

Wprowadzenie:

Wzrost zainteresowania (-)-cytyzyną, otrzymywaną na drodze ekstrakcji z nasion złotokapu (Laburnum anagyroides), wiąże się z jej interakcja z aminokwasami tworzącymi strukturę receptorów nikotynowo-acetylocholinowymi (nAChrs).[1-4] Właściwości blokujące tego alkaloidu zostały wykorzystane przez przemysł farmaceutyczny i jako środek ułatwiający rzucenie nałogu palenia tytoniu znalazł swoje miejsce na Polskim rynku (Desmoxan® i Tabex®). Ze względu na interakcje z receptorami nACh (-)-cytyzyna i jej pochodne sa również bardzo obiecującymi związkami w łagodzeniu objawów chorób neurologicznych, w szczególności choroby Alzheimera, Parkinsona i ADHD.[5] Ten fakt może wiązać się z możliwością koordynacji jonów miedzi przez cytyzynę, gdyż najnowsze badania wykazały, że obecność miedzi w tkankach mózgu przyspiesza proces rozwoju choroby Alzheimera.[6] Ciekawostka jest również fakt, że w badaniach na gryzoniach zauważono, że cytyzyna wykazuje właściwości redukujące pociąg do alkoholu. [7,8] (-)-Cytyzyna jest dobrym substratem w syntezach adduktów poprzez drugorzedowy atom azotu w pierścieniu C lub poprzez atom C3 i C5 w pierścieniu A (Rys. 1). Ponadto, stwierdzono, że właśnie modyfikacja chemiczna tego związku polepsza właściwości penetracji bariery krewmózg i stąd tez wpływ pochodnych cytyzyny na układ krążenia.[9]

Od ponad kilkunastu lat prowadzone są badania kompleksowania jonów metali przez alkaloidy chinolizydynowe.[10] Jednakże jak do tej pory nie zwracano uwagi na właściwości koordynacyjne alkaloidów trójcyklicznych, w tym bioaktywnej (-)-cytyzyny. W organizmach żywych wiele procesów życiowych zachodzi przy współudziale jonów metali, a jony miedzi należą do jednych z ważniejszych mikroelementów, które oddziaływują zarówno z kwasami nukleinowymi jak i białkami, a przez to wpływają na zmianę ich właściwości.

Również coraz szersze zastosowanie znajdują białka, zawierające tzw. palce cynkowe (zinc fingers) jako specyficzne modyfikatory genów, zarówno w badaniach podstawowych jak i próbach leczenia chorób dziedzicznych. Są to białka odpowiedzialne za regulację transkrypcji z matrycy DNA na RNA, a domena palców cynkowych Cys2-His2 jest najczęstszym motywem wiążącym DNA u eucaryota, oraz drugą domeną białkową w ludzkim genomie (2%) [11]

Przedstawiona praca jest częścią projektu mającego na celu analizę zależności pomiędzy właściwościami spektroskopowymi, a strukturą molekularną i rozkładem ładunku elektronowego jak i aktywnością biologiczną, w tym fungistatyczną alkaloidów chinolizydynowych., w szczególności cytyzyny i jej 1,n-di(12H-cytyzyno-12-yl)alkilowych-pochodnych.

Rysunek 1. Struktura (-)-cytyzyny (L) oraz 1,n-di(12H-cytyzyno-12-yl)alkilowych-pochodne (L_{1,n}; gdzie n=1-6).

Część eksperymentalna:

W tej pracy omówione zostaną kompleksy (-)-cytyzyny (**L**) z wybranymi solami miedzi oraz cynku: CuCl₂ (**1**), Cu(NO₃)₂ (**2**), Cu(CH₃COO)₂ (**3**), Cu(ClO₄)₂ (**4**), CuSO₄ (**5**), and ZnCl₂ (**6**), Zn(NO₃)₂ (**7**), Zn(CH₃COO)₂ (**8**). 1,n-Di(12H-cytyzyno-12-yl)alkilowych-pochodne (**L**_{1,1}; **L**_{1,2}; **L**_{1,3}; **L**_{1,4}; **L**_{1,5} oraz **L**_{1,6}) (Rys. 1) otrzymane zostały na drodze syntezy cytyzyny (**L**) z odpowiednimi dibromoalkilami z zastosowaniem promieniowania mikrofalowego (DMF; 120°C; 300W).

(-)-Cytyzynę (L) wyizolowano z nasion złotokapu (*Laburnum anagyroides*).[12,13] Kompleksy zostały otrzymane w drodze bezpośredniej reakcji ligandu z odpowiednia solą w stosunku stechiometrycznym 1:1 w roztworze metanolowym, refluks przez 6 godzin. Otrzymane kompleksy analizowano za pomocą ESI-MS, NMR, UV, Vis oraz EPR jak i poddając analizie rentgenograficznej. Pomiary widm masowych ESI-MS wykonano na spektrometrze mas Waters/Micromass (Manchester, Wielka Brytania) ZQ (aparat z pojedynczym kwadrupolem, oprogramowanie MassLynx V4.0).

W celu określenia składu i stałych trwałości tworzących się połączeń kompleksowych wykorzystano komputerową analizę danych potencjometrycznych (program Hyperquad). Miareczkowanie prowadzono w temperaturze $+20\pm1^{\circ}$ C, w atmosferze helu, przy stałej sile jonowej μ =0.1 (KNO₃). Titrantem był roztwór NaOH wolny od CO₂. W celu określenia sposobu koordynacji w tworzących się kompleksach przeprowadzono badania spektroskopowe UV-vis na spektrofotometrze ThermoFisher Scientific, model Evolution 300 (lampa ksenonową) 450-950 nm, 0.2 nm, 120nm/min. Badania elektronowego rezonansu paramagnetycznego (EPR) wykonano w temperaturze 196 °C za pomocą aparatu SE/X 2547 Radiopan. Analizy vis i EPR przeprowadzono w roztworze wodnym (vis) oraz wodno-glikolowym 3:1 (EPR) przy stosunku molowym składników 1:1 i stężeniu 0.005 M.

Widma NMR zmierzono na aparacie Bruker ADVANCE II 600 MHz. Związki mierzone były w roztworach D_2O (w odniesieniu do dioxanu). Wartości pH z uwzględnieniem zależności pD = pH _{odczyt pehametru} + 0.4 nastawiane wobec NaOD i DCl. Do analizy NMR kompleksów miedzi zastosowano stężenie liganda 0.01 M w stosunku molowym M:L(L) 1:100, a wiec badania NMR przeprowadzono przy niedomiarze jonów miedzi, w celu

zmniejszenia efektu poszerzania sygnałów pochodzących od atomów węgla znajdujących się w bezpośrednim sąsiedztwie skoordynowanego jonu miedzi.

Do przeprowadzenia pomiarów X-ray użyto dyfraktometru Supernowa (z detektorem Atlas) oraz Excalibur E firmy Agilent oraz programu sterującego dyfraktometrem CrysAlisPro. Dane zebrano w temperaturze 100(1)K, OxfordCryostat - kontrola temp. Struktury rozwiązano za pomocą programu SIR-92,[14] a następnie udokładniono pełnomacierzową metodą najmniejszych kwadratów używając programu SHELXL-2013.[15] Oba te programy są częścią pakietu WinGX.[16]

Wyniki:

Badania mają na celu rozszerzenia zasobów biblioteki pochodnych (-)-cytyzyny. W tym celu, na drodze reakcji omawianego alkaloidu jako substratu z odpowiednim solami otrzymano kompleksy cytyzyny z Cu(II) (Rys. 2) i Zn(II) oraz na skalę mikro otrzymano pochodne dicytyzyn: $L_{1,1}$; $L_{1,2}$; $L_{1,3}$; $L_{1,4}$; $L_{1,5}$ oraz $L_{1,6}$ (1,n-di(12H-cytyzyno-12-yl)alkilowe-pochodne) również z jonami metali I grupy (Rys.3).

Analiza makromolekuł, a zwłaszcza złożonych biocząsteczek, stała się możliwa po wprowadzeniu technik łagodnej, tzw. "miękkiej" jonizacji (ang. *soft ionization*), zwłaszcza takich jak jonizacja przez elektrorozpylanie (*electrospray ionization*, ESI). Podczas tej jonizacji praktycznie nie dochodzi do fragmentacji cząsteczek analitu. Metoda ta stała się bardzo atrakcyjna w badaniach biologicznie czynnych związków naturalnych i syntetycznych o strukturze kompleksów "gość-gospodarz".

Stosując spektroskopię ESI-MS, która jest odpowiednią metodą do analizy związków kompleksowych, przeprowadzono testy w skali mikro na cytyzynie oraz 1,n-di(12H-cytyzyno-12-yl)alkilowych-pochodnych. (rys.2 i 3). Badania te wykazały właściwości koordynacyjne jonów metali grupy I i II oraz Cu⁺² i Zn⁺² analizowanych związków.

Na rysunku 2 przedstawiono widma ESI-MS (-)-cytyzyny z jonami Cu⁺², na których widoczne są charakterystyczne jony izotopowe Cu(II), aczkolwiek przypisania odnoszą się do najbardziej rozpowszechnionego jonu izotopowego ⁶³Cu.

Ponadto, można wnioskować, że cytyzyna tworzy kompleksy 1:1 oraz 2:1. Jednakże w zależności od przeciwjonu sygnały $[L+Cu-H]^+$ (m/z=252) odpowiadające kompleksom Cu(II):L są intensywne dla soli CuCl₂ (1), Cu(CH₃CO₂)₂ (3) oraz Cu(ClO₄)₂ (4) podczas gdy sygnał $[2L+H]^+$ cechuje się mniejszą intensywnością. W przypadku kompleksów 2 oraz 5 odwrotna sytuacja ma miejsce. Natomiast, cytyzyna z solami Zn(II) nie tworzy jonów $[2L+Zn]^+$ i $[2L+Zn-H]^+$, ale intensywność sygnałów pochodzących od jonów $[L+Zn-H]^+$ (m/z=253) i $[L+ZnX]^+$ oraz $[2L+ZnX]^+$ jest porównywalna. Jony $[L+CuX]^+$ w kompleksach cytyzyny (L) z solami Cu(II) nie są obserwowane, a jedynie $[2L+CuX]^+$. Zatem, na podstawie spektroskopii ESI-MS, można stwierdzić że cytyzyna i jej pochodne wykazują właściwości kompleksotwórcze, pozostaje jednak kwestia w jaki sposób jon metalu jest koordynowany przez cząsteczki alkaloidów.

Analizowano widma mas wybranych związków: cytyzyny (L) oraz 1,n-di(12Hcytyzyno-12-yl)alkilowych pochodnych ($L_{1,n}$) zarejestrowane po dodaniu mieszaniny litowców: Li⁺, Na⁺, K⁺, Rb⁺ oraz Cs⁺. Z sygnałów na widmach można wnioskować o stechiometrii 1:1 kompleksowania jonów metali (Rys. 3). Również tworzą się kompleksy dimerów $L_{1,1}$ - $L_{1,5}$, ale tylko przy dużych stężeniach, stąd na widmie najintensywniejsze są jony o stechiometrii 1:1 z jonami metali, a nie 2:1. Wynika z nich pewna tendencja do powstawania kompleksów $L_{1,1}$ i $L_{1,2}$ z jonami Na⁺ oraz K⁺. Z widm wnioskujemy, że jon [$L_{1,n}$ ⁺Na⁺]⁺ należy do najintensywniejszych. Jednak należy wziąć pod uwagę, że właśnie tego jonu Na⁺ jest najwięcej w przyrodzie i stąd jego dominacja na widmie. Natomiast, jony charakteryzujące się niską gęstością ładunku jak Rb⁺ czy Cs^+ w niewielkim stopniu tworzą kompleksy z $L_{1,1}$ i $L_{1,2}$, co dużym stopniu związane jest z zawadą steryczną. Jednak w przypadku $L_{1,3} - L_{1,5}$ intensywność sygnałów pochodzących od tych skompleksowanych atomów metali wzrasta.

Rysunek 2. Widma ESI-MS zawierające cytyzynę (**L**) i sole miedzi Cu(II): a) $L/CuCl_2(1)$, b) $L/Cu(NO_3)_2(2)$, c) $L/Cu(CH_3COO_2)_2(3)$, d) $L/Cu(CIO_4)_2(4)$, c) $L/CuSO_4(5)$. Pomiary wykonano w roztworach metanolowych przy cv=130.

Rysunek 3. Zbiorcze widmo ESI-MS przedstawiające właściwości kompleksotwórcze 1,5-di(12H-cytyzyno-12-yl)pentanu ($\mathbf{L}_{1,5}$) z solami jonów I grupy. Pomiary wykonano w roztworach metanolowych przy cv=130.

Rysunek 4. ¹³C NMR – porównanie przesunięć chemicznych: (-)-cytyzyny (L, z przypisanymi atomami węgli) i z kompleksem Cu(II) (**2**, przypisania przesunięć chemicznych - δ [ppm]). Widmo zmierzono w D₂O, dioksan - standard, 600 MHz.

Wiadomym jest, że cytyzyna (L) może koordynować jony metalu zarówno poprzez drugorzędowy atom azotu N12 w pierścieniu C jak i poprzez atom tlenu grupy laktamowej w pierścieniu A. Dane literaturowe dotyczące struktur rentgenowskich kompleksów cytyzyny z Pt(II), Pt(IV) oraz Pd(II) opisują koordynacyję tylko poprzez donorowy atom azotu N12 pierścienia C.[17,18]

Spektroskopia NMR kompleksów: 1 (L/CuCl₂), 2 (L/Cu(NO₃)₂) oraz 7 (L/Zn(NO₃)₂) potwierdziła koordynację jonów metali przez cytyzynę i w roztworach dane były zgodne z danymi literaturowymi.[17,18] Analizując przesunięcia chemiczne, stwierdzono, że obserwowany jest efekt kompleksowania na przykładzie sygnałów pochodzących od atomów węgla w pierścieniu C oraz B: C7, C11 i C13, które uległy przesunięciu w

stronę wyższego pola w porównaniu z atomami samego liganda (Rys. 4, Tabela 1), a zatem dane te potwierdziły koordynację jonów metali przez N12 w pierścienu C.

Tabela 1. ¹³C-NMR – przesunięcia chemiczne (δ [ppm]) cytyzyny (L) i jej kompleksów z Cu(II) kompleks 2 oraz Zn(II) kompleks 7, D₂O przy pH = 6,5 (600 MHz, dioksan).

At. C	L	2 ^b	Δδ	7 ^b	Δδ
2	165.89	165.86	-0.03	165.89	+0.01
3	117.67	117.79	+0.12	117.75	+0.12
4	142.50	142.49	-0.01	142.51	+0.01
5	110.71	110.72	+0.01	110.74	+0.04
6	148.44	148.17	-0.27	148.22	-0.22
7	32.69	32.57 ^a	-0.14	32.55	-0.14
8	23.69	23.60	-0.09	23.60	-0.09
9	25.97	25.90 ^a	-0.07	25.87	-0.1
10	49.71	49.62	-0.09	49.64	-0.07
11	49.45	49.27 ^a	-0.18	49.34	-0.1
13	50.71	50.52 ^a	-0.19	50.60	-0.11

^a szerokie sygnały; Δδ [ppm] różnice przesunięć chemicznych kompleksu i ligandu (L).

^b-stężenie L: 0.01M; stosunek molowy 1:100 (Cu:L oraz Zn:L).

Stosunkowo niewielkie różnice w przesunięciach chemicznych ($\Delta\delta$), odpowiednich atomów węgla liganda (L) jak i badanego kompleksu (Tabela 1), pozwalają na wyciągnięcie wniosków, że koordynacja jonu metalu nie ma wpływu na zmianę stereochemii cząsteczki cytyzyny, albowiem tego typu zmiany konformacji zwykle skutkują znacznie większymi różnicami w $\Delta\delta$ – rzędu 10 ppm.[19] Ponadto, w przypadku widm kompleksów cytyzyny z solami Cu(II) właśnie sygnały atomów C7, C11 i C13 charakteryzują się niższą intensywnością oraz rozmytym kształtem (Rys. 4). Widma NMR kompleksów Cu(II), że względu na paramagnetyzm zmierzone zostały przy stukrotnym nadmiarze liganda w stosunku do soli miedzi, tak aby efekt poszerzenia linii był jak najmniejszy. Efekt ten jest też potwierdzeniem, że ligand koordynuje tylko jeden jon Cu⁺², gdyż w przypadku potencjalnych cząsteczek z dwoma jonami Cu⁺² dochodzi do zniesienia wspomnianego efektu poszerzenia linii.[20-23]

Jak wynika z krzywej dystrybucji form reakcja kompleksowania w układzie Cu(II)/cytyzyna(L) rozpoczyna się od pH około 4,5 wraz z deprotonacją cytyzyny (Rys 5). Od pH około 6,5 w układzie występuje osad co uniemożliwiło badania powyżej tej wartości. Na podstawie rozkładu form ustalono pH, w którym dominuje kompleks CuL i przy tej wartości pH przygotowywano próbki do dalszych badań spektroskopowych EPR i vis, mających na celu określenie składu wewnętrznej sfery koordynacyjnej.

Na podstawie parametrów spektralnych vis i EPR kompleksu CuL znajdującego się w roztworze określono, że w wewnętrznej sferze koordynacyjnej jonu miedzi znajduje się jeden atom azotu oraz atomy tlenu.

Na uwagę zasługuje fakt, że w przypadku kompleksu stałego analiza EPR (Rys. 6) jednoznacznie wskazała na udział w koordynacji tylko atomów tlenów cytyzyny. Z drugiej strony potwierdziła koordynację jednego jonu Cu⁺² (rys 8), gdyż występowanie dwóch jonów miedzi skutkowałoby zanikiem struktury nadsubtelnej w widmie EPR,[24,25] a takiej sytuacji nie zaobserwowano, stąd wniosek, że tego typu kompleksy w badanych układach nie tworzą się. Również parametry spektralne EPR jak i UV (Rys. 6 i 7) potwierdzają dane odczytane z widm NMR o koordynacji jonu metalu przez atom azotu N12 w pierścieniu C.

Rysunek 5. Krzywa dystrybucji form tworzących się przy C_{cu} =0.001M i C_L =0.001M w układzie Cu(II)/cytisine(L).

Rysunek 6. Widma Vis: **a**) kompleks CuL przy pH=6.5 w układzie ($C_{Cu(II)}$ =0.01M; Cu(II)/L 1:1. **b**) widmo rozpuszczonego kompleksu **1**.

Rysunek 7. Widmo EPR kompleksu cytyzyny z CuSO₄ (5).

A zatem na podstawie analiz spektralnych MS, NMR, EPR, UV i vis jest możliwe określenie składu jak i miejsca koordynacji, stąd zaskakujące były wyniki analizy rentgenostrukturalnej, które wykazały, że w ciele stałym to atom tlenu grupy laktamowej pierścienia A koordynuje jon metalu (Rys. 9 i 10), a nie tak jak zostało stwierdzone na podstawie analiz przeprowadzonych w roztworach, czyli poprzez sprotonowany drugorzędowy atom azotu (N12) w pierścieniu C. Wynik ten też jest odmienny od danych literaturowych analiz rentgenostrukturalnych odnoszących się do koordynacji jonów Pt(II), Pt(IV) oraz Pd(II) poprzez atom N12.[17,18]

Rysunek 9. Struktura kompleksu cytyzyny z kationem Cu^{+2} (5) w obrazie elipsoid drgań termicznych (50% prawdopodobieństwa). Atomy wodoru zostały pominięte dla lepszej przejrzystości prezentowanej struktury.

Rysunek 10. Struktura kompleksu cytyzyny z kationem Zn^{+2} (6) w obrazie elipsoid drgań termicznych (50% prawdopodobieństwa). Atomy wodoru zostały pominięte dla lepszej przejrzystości przedstawianej struktury.

Wnioski:

Pomiary pozwalają wnioskować, że cytyzyna jak i jej di-pochodne z jonami litowców tworzą kompleksy o stechiometrii 1:1. Zauważono, że wszystkie protonowane cytyzyny tym chętniej dimeryzują im mniejszy jest kation metalu. Jednak w procesie dimeryzacji *N*-metylocytyzyna (**L**₂) w znacznym stopniu różni się od pozostałych ligandów. **L**₂ znacznie chętniej dimeryzuje z kationami większymi jak Rb⁺ oraz Cs⁺ aniżeli z jonami Na⁺ i K⁺. Natomiast z sodem i potasem najchętniej dimeryzuje cytyzyna (**L**), a spośród dicytyzyn takie preferencje wykazuje 1,3-dicytyzynopropan (**L**_{1,3}). Natomiast, 1,2-dicytyzynoetan (**L**_{1,2}) oraz 1,5-dicytyzynopentan (**L**_{1,5}) łatwiej tworzą kompleksy z jonem litu.

Koordynacja jonów metali przez bioaktywne związki ma duże znaczenie w dalszych badaniach nad aktywnością cytyzyny jak i innych alkaloidów chinolizydynowych. Te podstawowe dane już będą mogły znaleźć zastosowanie jako modelowe związki w dalszych procesach opisujących wpływ jonów na strukturę molekularną oraz układy elektronowe ligandów chinolizydynowych. Ponadto, (-)-cytyzyna jako ligand kompleksujący jony i to nie tylko miedzi i cynku może znaleźć potencjalne zastosowanie jako narzędzie służące do wiązania metali w organizmach żywych.

Podziękowania:

Projekt finansowany przez Narodowe Centrum Badań i Rozwoju z Funduszy Norweskich (Norway Grants) w ramach Programu Badań Polsko-Norweskich: Pol-Nor/203119/32/2013), pt.: "Superior bio-friendly systems for enhanced wood durability".

Literatura:

[1] J. Rouden, M.-C. Lasne, J. Blanchet, J. Baudoux, Chem. Rev. 114 (2014) 712-778.

[2] P. Tutka, Expert. Opin. Investig. Drugs 17 (2008) 1473-1485.

[3] L.E. Hebert, J. Weuve, P.A. Scherr, D.A. Evans, Neurology 80 (2013) 1778-1783.

[4] B. Tasso, C.C. Boido, E. Terranova, C. Gotti, L. Riganti, F. Clementi, R. Artali, G.

Bombieri, F. Meneghatti, F. Sparatore, J. Med. Chem. 52 (2009) 4345-4357. [5] C.C. Boido, B. Tasso, V. Boido, F. Sparatore, Farmaco. 58 (2003) 265-277.

[6] www.pnas.org/cgi/doi/10.1073/pnas.1302212110 I. Singha, A.P. Sagarea, M.

Comaa, D. Perlmuttera, R. Geleind, R.D. Bella, R.J. Deanea, E. Zhonga, M. Parisia, J. Ciszewski, R.T. Kaspera, R. Deanea

[7] R.K. Sajja, S. Rahman, Alcohol 47 (2013) 299-307.

[8] R. Sotomayor-Zárate, K. Gysling, U.E. Busto, B.K. Cassels, L. Tampier, M.E. Quintanilla, Psychopharmacology 227 (2013) 287-298.

[9] E.M. Jutkiewicz, K.C. Rice, F.I. Carroll, J.H. Woods, Drug Alcohol Depend. 131 (2013) 284-297.

[10] B. Jasiewicz, Mini-Reviews Org. Chem. 6 (2009) 275-282.

[11] Radosław Lach, Położyć łapę na genach czyli nowe wykorzystanie starych białek. http://bioinfo.mol.uj.edu.pl/articles/Lach05]

[12] A.K. Przybył, M. Kubicki, J. Mol. Struct. 985 (2011) 157-166.

[13] E. Marriere, J. Rouden, V. Tadino, M.-C. Lasne, Org. Lett. 8 (2000) 1121-1124.

[14] A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M.C. Burla, G. Polidori,

M. Camalli, J. Appl. Cryst. 27 (1994) 435.

[15] G.M. Sheldrick, Acta Cryst. A64 (2008) 112-122.

[16] L.J. Farrugia, J. Appl. Cryst. 45 (2012) 849-854.

[17] S. Bouquillon, J. Rouden, J. Muzart, M.-C. Lasne, M. Hervieu, A. Leclaire, B. Tinant, C.R. Chimie 9 (2006) 1301-1308.

[18] R.A. Khisamutdinov, V.V. Potapov, Y.I. Murinov, I.O. Maidanova, I.P. Baikova, Russ. J. Inorg. Chem. 45 (2000) 372-377.

[19] B. Jasiewicz, B. Warżajtis, U. Rychlewska, Polyhedron 989 (2011) 51-59.

[20] A. Rocchi, D. Valensin, C. Aldinucci, G. Giani, R. Barbucci, E. Gaggelli, H. Kozlowski, G. Valensin, J. Inorg. Biochemistry 117 (2012) 326-333.

[21] R. Jastrzab, New J. Chem. 34 (2010) 2867-2874.

[22] L. Lomozik, R. Jastrzab, A. Gasowska, Polyhedron 19 (2000) 1145-1154.

[23] G. Kotowycz, O. Suzuki, Biochemistry 12 (1973) 5325-5328.

[24] L. Lomozik, L. Bolewski, R. Dworczak, J. Coord. Chem. 41 (1997) 261-274.

[25] R. Barbucci, M.J.M. Campbell, Inorg. Chim. Acta 16 (1976) 113–120.